06.03.2013
F.A.Z.-Column by Emanuel Derman
Little Big Data
Von Emanuel Derman
Seventy years ago cybernetics was a
hot field; thirty years ago, it was catastrophe theory. Those
Greek-inspired words for disciplines that once brought hope of
explaining human behavior now evoke a quaint nostalgia, like Polaroids
of long-haired young people in bell-bottomed jeans and tie-dyed
T-shirts. The new buzzword nowadays is Big Data, the fashionable term
for capturing and analyzing the vast collections of information that
people reveal about themselves when shopping on Amazon, Travelocity, and
Netflix, or when writing about themselves on Facebook and Twitter. Big
Data utilizes a mix of computer science, information technology,
mathematics, and applied statistics. It is increasingly used to sell you
products or persuade you to vote for politicians by tailoring the
product’s or politician’s image to your particular data-generated
persona. Some talking heads like to say that computer-aided analysis of
patterns will soon replace our traditional methods of discovering the
truth, in medicine and the social sciences as well as in physics.
What are the classic ways of knowing? Recall the great triumph at the dawn of modern science, the understanding of gravitation and motion. How did that come about?
For millenia after the Greeks, scientists’ prejudices led them describe all planetary movements in terms of circles about a stationary earth. But the motion of a planet, as seen from the orbiting earth itself, is too complicated for a single circle -- sometimes it seems to move backwards relative to the earth -- and so it needs circles moving on circles moving on circles, i.e. epicycles. Eventually, Galileo pointed out that the earth wasn’t stationary, that the earth and planets orbited the sun, and that the planets’ weird apparently retrograde motions were not intrinsically theirs but rather a consequence of their being observed from the moving earth.
If you want to glimpse the miracle of discovery, think about Kepler’s second law: the line between the Sun and a planet sweeps out equal areas in equal times. This deep symmetry of planetary motion implies that the closer the planet to the sun, the more rapidly it moves, as shown below.
The astonishing thing is that there is no line between a planet and the sun for Kepler to observe. His data consisted of planetary positions in the night sky. How then did he decide to describe the motion of the planets in terms of an invisible imaginary line? No one knows exactly, but it involved long immersion, struggle, and strange associative thinking that arose from somewhere inside him, and then - Aha! - intuition, followed by checking the data.
Kepler’s laws described the patterns of the planets, but not their causes. Newton found a cause; he showed that Kepler’s laws were a mathematical consequence of Newton’s own theories of gravitation (the inverse square law of attraction) and motion (Force = mass times acceleration).
How did Newton discover his theories? For sure, the orbiting planets and falling apples didn’t announce the laws that drove them. Wrote John Maynard Keynes about Newton: I fancy his pre-eminence is due to his muscles of intuition being the strongest and most enduring with which a man has ever been gifted. Keynes understood something about the discovery of truth which many of his more formal economist disciples have never learned.
Newton’s laws have been supplanted by Einstein’s, but that doesn’t mean that Newton is an approximation to Einstein. Newton is to Einstein as cursive is to typing, or as navigation by the stars is to the Global Positioning System. Two different approaches reach the same end by different means, with different accuracies. One doesn’t approximate the other. Both are theories that describe facts.
The final mode of understanding is a model. A model compare something we don’t understand to something we do. So, for example, the famous liquid drop model of the atomic nucles pretends that the nucleus is a drop of water that can vibrate and rotate and even fission into two. Useful, picturesque, but not entirely true. Similarly, the Black-Scholes financial option model compares the uncertain movement of stock prices to the diffusion of smoke from a cigarette tip. Useful, up to a point -- but not fact. Models are metaphors, graven images of reality but not reality itself, analogies whose incautious use can unleash all the dangers of idolatry that God warned against in the second of his commandments.
Big Data is useful, but is not a replacement for the classic ways of understanding the world. Data has no voice. There is no “raw” data. Choosing what data to collect takes insight; making good sense of it requires the classic methods: you still need a model, a theory, or intuition to find a cause.
“Philosophy is a battle against the bewitchment of our intelligence by means of language,” wrote Wittgenstein. I take that to mean that language can deceive our natural intuition, and we need philosophy to reclaim it.
In a similar sense, I would argue, science is a battle against the bewitchment of our intelligence by data.
What are the classic ways of knowing? Recall the great triumph at the dawn of modern science, the understanding of gravitation and motion. How did that come about?
For millenia after the Greeks, scientists’ prejudices led them describe all planetary movements in terms of circles about a stationary earth. But the motion of a planet, as seen from the orbiting earth itself, is too complicated for a single circle -- sometimes it seems to move backwards relative to the earth -- and so it needs circles moving on circles moving on circles, i.e. epicycles. Eventually, Galileo pointed out that the earth wasn’t stationary, that the earth and planets orbited the sun, and that the planets’ weird apparently retrograde motions were not intrinsically theirs but rather a consequence of their being observed from the moving earth.
Intuition, followed by checking the data
In the early 1600s Kepler examined the data on planetary positions and formulated his three astonishing laws of planetary motion: planets move in ellipses (not circles) about the sun, the line between the Sun and a planet sweeps out equal areas in equal times, and the square of the orbital period is proportional to the cube of the distance from the sun.If you want to glimpse the miracle of discovery, think about Kepler’s second law: the line between the Sun and a planet sweeps out equal areas in equal times. This deep symmetry of planetary motion implies that the closer the planet to the sun, the more rapidly it moves, as shown below.
The astonishing thing is that there is no line between a planet and the sun for Kepler to observe. His data consisted of planetary positions in the night sky. How then did he decide to describe the motion of the planets in terms of an invisible imaginary line? No one knows exactly, but it involved long immersion, struggle, and strange associative thinking that arose from somewhere inside him, and then - Aha! - intuition, followed by checking the data.
How to discover theories
Intuition is the first means of knowing. The observer becomes so close to the object (or person) observed that he begins to experience their existence from both outside and inside them. Intuition is a merging of the observer with the observed. It’s almost quantum-like, the ability to be in two places at the same time.Kepler’s laws described the patterns of the planets, but not their causes. Newton found a cause; he showed that Kepler’s laws were a mathematical consequence of Newton’s own theories of gravitation (the inverse square law of attraction) and motion (Force = mass times acceleration).
How did Newton discover his theories? For sure, the orbiting planets and falling apples didn’t announce the laws that drove them. Wrote John Maynard Keynes about Newton: I fancy his pre-eminence is due to his muscles of intuition being the strongest and most enduring with which a man has ever been gifted. Keynes understood something about the discovery of truth which many of his more formal economist disciples have never learned.
Useful, picturesque, but not entirely true
Theories are descriptions of the laws of the world; they can be right, partially right or totally wrong. What all theories have in common is that, like God’s voice to Moses in the desert, they proclaim: I am what I am. Theories stand on their own feet.Newton’s laws have been supplanted by Einstein’s, but that doesn’t mean that Newton is an approximation to Einstein. Newton is to Einstein as cursive is to typing, or as navigation by the stars is to the Global Positioning System. Two different approaches reach the same end by different means, with different accuracies. One doesn’t approximate the other. Both are theories that describe facts.
The final mode of understanding is a model. A model compare something we don’t understand to something we do. So, for example, the famous liquid drop model of the atomic nucles pretends that the nucleus is a drop of water that can vibrate and rotate and even fission into two. Useful, picturesque, but not entirely true. Similarly, the Black-Scholes financial option model compares the uncertain movement of stock prices to the diffusion of smoke from a cigarette tip. Useful, up to a point -- but not fact. Models are metaphors, graven images of reality but not reality itself, analogies whose incautious use can unleash all the dangers of idolatry that God warned against in the second of his commandments.
Against the bewitchment
There’s one final mode of understanding: statistics, the statistical analysis that lies behind Big Data. Statistics seeks to find past tendencies and correlations in data, and assumes they will persist. But, in a famous unattributed phrase, correlation does not imply causation.Big Data is useful, but is not a replacement for the classic ways of understanding the world. Data has no voice. There is no “raw” data. Choosing what data to collect takes insight; making good sense of it requires the classic methods: you still need a model, a theory, or intuition to find a cause.
“Philosophy is a battle against the bewitchment of our intelligence by means of language,” wrote Wittgenstein. I take that to mean that language can deceive our natural intuition, and we need philosophy to reclaim it.
In a similar sense, I would argue, science is a battle against the bewitchment of our intelligence by data.
3 comments:
By data having the potential to bewitch, do yo mean that, like language a huge amount of data can be used to sort of decorate and stabilize our current worldview and understandings. While philosophy and science give us tools to potentially slow down our over-confidence and provide us with a check on our sense of the way things are?
Interesting comparisons you make here. Good post. I'm not a science person myself, but it is inspiring for me to read on it anyway.
Also, from other posts, are you thinking that the Earth may be quite old, even if Adam was not too long ago? Just wondering...
And your Whom Do We Pray to Question and links are appreciated. Great Question.
Blessings.
Johanna
Don't forget, I didn't write this article. Hopefully I can drag my writing beyond a junior high level by the time I'm done with my degree in psychology.
I love this quote here:
“Philosophy is a battle against the bewitchment of our intelligence by means of language,” wrote Wittgenstein.
I've recently moved on from the local conservative mennonite church after 5 years. Great experience for both my daughter and I. Their private school was a nice touch to my daughter's personality (the Rod and Staff books did not nearly cut it). However, what cut my time short there was, (I had been planning on staying until May when my daughter would graduate the eight grade), when the head preacher (the bishop) began teaching that words are our enemy, knowledge is our enemy, and even understanding is not possible in many instances. I had seen this potential in him but I thought I could help him balance it out for himself. But finally, in his frustration, and not wanting to be accountable to "words", or anybody else, he preached one Sunday that, "we don't even use words when we are before God on his throne". He says that without working in Romans 3:4 which suggests that we will be justified by our words before the throne of Christ-- confessions of existing faith and love that places us there in Christ rather than with the unbeliever's judgement further on down the line by the Father.
This was the bishop's reaction to my having confused him by asking him to think about things a little more deeply. The confusing part for him was how to stay in the small denominational box of his, separated from the rest of the Body of Christ, while considering clearer alternatives.
This was a real, exciting, visceral experience for us over the last five years and I am looking forward to writing about it as time permits.
From here my daughter goes onto online high school for a diploma, with an emphasis in getting out with other onliners, home schoolers, and children from our new bible church.
In regards to "Adam", I'm thinking "old planet, a genealogically dated Adam, and correspondingly aged newly refurbished planet earth". I hope you see how I arrive there. The Lord gives us a lot to ponder as we look around us and study His word.
Thanks for stopping by.
My pleasure.
I appreciate your letting us in on your recent 5-yr sojourn. Sounds like it was a great experience for you both, even if you've now moved into a bible church. It does sound like your experience as a family would make a very readable and thoughtful book.
We also home educate and one of the things I've told my daughters is that the learning process can be threatening. I've told them that there is a stage where when you are learning a major new concept about the way the world works and which may seem counter-intuitive, and not just counter-intuitive but thoroughly disruptive regarding your current model of the way things work, when the threatening feelings almost give you a fight or flight response. And unfortunately you have to keep learning in order to find out if your feelings are discerning or just the normal reaction against the disruptive side of building a more accurate understanding of the world. So I tell them just get used to it.
My husband loves reading philosophy, esp. Kant and Kierkegaard, and also Alvin Plantinga.
Right now I'm reading a little, which I may blog about.
You Genesis analysis sounds reasonable. Have you looked into the RATE scientists, and their geological project?
Your daughter's online high school sound terrific.
Blessings.
Post a Comment